B 0L95534 0001284 805 WA

Special right Noti

© 1994 by the American Institute of
Aeronautics and Astronautics. All rights reserved.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:22:13 Information Handling Services, 1999

AIAA 6-010 93 M@ 0695534 0001532 15T WM

AIAA
G-010-1993

I Guide

Reusable Software: Assessmen
Criteria for Aerospace Applications

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:22:13 Information Handling Services, 1999

ATAA 6-010 93 B 0695534 0001533 09

AJAA
G-010-1993

Guide for Reusable Software:
Assessment Criteria for
Aerospace Applications

Sponsor

American Institute of Aeronautics and Astronautics

Abstract

This AIAA Guide provides a basis for assessing potentially reusable software. It introduces the
concept of domain analysis and describes the principal products of this method. Criteria for
assessing the reusability of software down to the component level, along with specific examples
are included. A methodology for storing the analyses and criteria and establishing a reuse library
are given.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:22:13 Information Handling Services, 1999

AIAA 6-010 93 W@ DbL95534 DO0OLS34 Te2 IN
AIAA G-010-1993

Guide for reusable software : assessment criteria for aerospace
applications ; sponsor, American Institute of
Aeronautics and Astronautics.
p- cm.
Includes bibliographical references.
ISBN 1-56347-049-7
1. Computer software--Reusability. 2. Aeronautics--Computer
programs. 3. Astronautics--Computer programs. I. American
Institute of Aeronautics and Astronautics.
QA76.76.R47G85 1993
005.1--dc20 93-28289
CIP

Published by
American Institute of Aeronautics and Astronautics
370 L’Enfant Promenade, SW, Washington, DC 20024

Copyright © 1993 American Institute of Aeronautics and Astronautics
All rights reserved

No part of this publication may be reproduced in any form, in an electronic
retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:22:13

Information Handling Services, 1999

AIAA 6-010 93 MR (0L95534 0001535 969 WA

AIAA G-010-1993
CONTENTS
Foreword o v
1.0 Introduction........... ..., 1
1.1 PUI PO e |
1.2 S0P .ttt 1
1.3 Intended AUdIENCEvvininiii i 1
1.4 Background........oooiriiiiiii 1
1.5 The Component Assessment Process........c.coooooiiiiiiiviiiieerienineeennnnn.n. 2
1.6 ASSUINPLIONS . ..ottt et e e r et e e e s e et etenena e reneneaens 2
2.0 Domain Analysis....... T ON 2
2.1 Domain Analysis Approachesccovviiiviiriviiiiiiiiiiiieieeeene 3
2.2 Domain Analysis Criteria......cccoeeirvieriiiirriiriiiiiiireeii e e eean 6
3.0 Component ASSeSSINENt..............ccoviiiiiiiiiiiiiiiiiiiiiiaiiiieaeenannes 6
4.0 Reuse Library ... 7
4.1 Emerging Issues - Software Reuse Library Support for a Reuse Process 7
4.2 Emerging Issues - Library Interoperability..........cocccooviiiiiiiiiiniinnnnnn. 8
5.0 Conclusion 9
6.0 GlOS S AT Y e 9
7.0 References..............ooo i 10
Appendix A Domain Analysis Criteria........................ 13
Appendix B Component Assessment Criteria..............................oiiiiee, 15
Appendix C Reuse Library Criteria....................ooooiiiiiiiiiiiiiiien, 21
iii

e —

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:22:13

Information Handling Services, 1999

AIAA 6-010 93 EE 0L95534 0001536 &8T5 WA

AIAA G-010-1993

v

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:22:13 Information Handling Services, 1999

— L e - LA

- - - s —

AIAA 6-010 93 W@ 0L95534 0001537 731 MM

Foreword

This Guide for Reusable Software: Assess-
ment Criteria for Aerospace Applications has
been sponsored by the American Institute of
Aeronautics and Astronautics as part of its
Standards Program.

Software reuse and the development of cri-
teria to aid in assessing potentially reusable
software is an emerging discipline. This
AIAA Guide provides the reader with in-
formation on performing domain analysis as
the basis for developing criteria for assessing
potentially reusable software and establishing
a software reuse library. It includes guidance
on performing the following:

. Domain analysis
. Component assessment
. Reuse library assessment.

This Guide was developed to meet the vary-
ing needs of software personnel such as:

Managers

Software engineers
Quality engineers
Software reuse librarians
Reuse analysts

Reuse researchers.

® * o o o o

The AIAA Standards Procedures provide that
all approved Standards, Recommended Prac-
tices, and Guides are advisory only. Their
use by anyone engaged in industry or trade is
entirely voluntary. There is no prior agree-
ment to adhere to any AIAA standards publi-
cation and no commitment to conform to or
be guided by any standards report.

In formulating, revising, and approving stan-
dards publications, the Committees on Stan-
dards will not consider patents which may
apply to the subject matter. Prospective users
of the publications are responsible for
protecting themselves against liability for in-
fringement of patents or copyrights, or both.

ATAA G-010-1993

This project was an undertaking of the ATAA
Committee on Standards for Software
Systems (Soft/CoS) and its Software Reuse
Working Group (SoftReWG). The
SoftReWG developed this document and in-
corporated comments of reviewers from
academia, government, and industry. After
broader use of the Guide, it is planned to
submit it for approval as an American Na-
tional Standard.

ATAA Software Systems Committee
on Standards

At the time of preparation, the following
individuals were members of the AIAA
Software Systems Committee on Standards:

Beverly Kitaoka, Chairman (Science Appli-
cations International Corporation)

John W. Brackett (Boston University)

Ed Comer (Software Productivity Solutions)

Anne B. Elson (Jet Propulsion Laboratory)

Steven Glaseman (Aerospace Corporation)

Frank LLamonica (Rome Laboratory)

Brian Larman (Jet Propulsion Laboratory)

Constance Palmer (McDonnell Douglas
Missile Systems Company)

Richard J. Pariseau (Naval Air Warfare Cen-
ter, Aircraft Division)

Randall Scott (Software Productivity Con-
sortium)

Alice A. Wong (Federal Aviation Adminis-
tration)

The following individuals constituted the
Software Reuse Working Group:

Beverly Kitaoka
Frank Lamonica
Brian Larman

The document was approved by the Software
Systems Committee on Standards in March
1993.

The AIAA Standards Technical Council (Ali
H. Ghovanlou, Chairman) approved the
document in May 1993.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:22:13

Information Handling Services, 1999

AIAA 6-010 93 BN 0695534 0001538 bLva HR

AIAA G-010-1993

vi

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:22:13 Information Handling Services, 1999

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

AIAA 6-010 93 W® 0L95534 0001539 504 WM

1.0 INTRODUCTION
1.1 Purpose

This Guide provides the reader with informa-
tion on performing domain analysis as the
basis for developing criteria for assessing
potentially reusable software and establishing
a software reuse library. It focuses on the
applicability of this approach within
aerospace applications domains. This ap-
proach is relevant both to organizations with
established reuse programs and to those de-
siring to establish a software reuse program.

1.2 Scope

This Guide commences with a discussion of
domain analysis, followed by component as-
sessment and concludes with the role of a
reuse library. Section 2.0 defines domain
analysis, and describes the principal products
of such an analysis. Discussion of various
approaches and techniques documented in the
literature is then provided. Examples of cur-
rent aerospace applications domain analysis
are the Common Ada Missile Parts (CAMP)
and the Naval Training Systems Center
Reuse Initiative projects. Criteria to be con-
sidered for domain analysis are then
presented.

Section 3.0 explains component assessment
for reuse and provides criteria that could be
used for such an assessment. To achieve
significant productivity gains with reuse, the
traditional concept of components as source
code must be expanded to include compo-
nents of many types such as specifications,
requirements, designs, data sets, and test
sets. The component assessment criteria of
section 3.0 are divided into three categories:
domain assessment, reuse assessment, and
software assessment criteria.

Finally, as presented in section 4.0, the as-
sessment criteria specified during the domain
analysis process must be captured and stored
in a reuse library where they are readily ac-
cessible to both the component developers
and the component assessors. The reuse li-
brary stores information about the domain
and provides tools to facilitate its use. The
role of the library with respect to component

ATAA G-010-1993

assessment is described to provide a complete
picture of the reuse process from the assess-
ment perspective.

1.3 Intended Audience

This guide is intended for use by both practi-
tioners (e.g., software developers, managers,
quality engineers, and reuse librarians) arnd
researchers. Its purpose is to provide a
common baseline for discussion and to define
a procedure for assessing the reusability of
software, performing domain analysis, and
setting up a reuse library.

1.4 Background

As the cost of software development rises,
techniques for controlling the upward trend
must be pursued and implemented. One of
the most promising techniques being em-
ployed involves reusing software that has
been developed and paid for in prior projects.
The use of the Ada language also assists in
controlling the life cycle costs of software
development. In addition to being a Depart-
ment of Defense (DoD) requirement since
1987, there are many compelling reasons for
using Ada in today’s aerospace applications.
Coupled with effective software design
methods, such as object oriented design, Ada
directly supports the development of highly
reliable and maintainable aerospace systems.
It provides for an efficient development envi-
ronment, particularly when coupled with the
concept of reusability, thus offering the po-
tential for significant productivity improve-
ments. Ada also supports software portabil-
ity and reuse while standardizing on a single
development environment for component
development.

With few exceptions, the reuse of software
has not been overly successful to date. In the
past, software has typically been developed
to fit a particular function with no thought to
enhancing the component for use on another
project. Software has not been designed with
reuse as a primary objective. Software must
be designed and developed with reuse as a
primary goal in order for components to be
reused effectively in other projects or
applications.

1999 13:22:13

Information Handling Services,

1999

AIAA 6-010 93 B 0bL95534 0001540 226 WA

ATAA G-010-1993

1.5 The Component Assessment
Process

The main objectives of the assessment pro-
cess are to provide guidance to software
component developers in producing good
reusable components and to assist the asses-
sor in evaluating these potential reusable
components. To aid in the automation of the
assessment process, several commercial off-
the-shelf (COTS) tools are currently avail-
able. To aid in the assessment of domain
specific applications, corresponding domain
specific assessment tools are also being
developed.

Reuse will have a major impact on the classi-
cal software life cycle if reuse is an integral
part of each life cycle phase and if special
consideration and concerns are addressed.
To achieve the productivity gains envisioned,
tasks such as searching for existing products
which meet the system requirements either di-
rectly or through simple modification should
be included in the project proposal stage. In
each of the subsequent phases of the software
life cycle there are corresponding places for
inclusion of reuse (e.g., rapid prototyping,
requirements analysis, and testing) in
addition to actual software development.

If the suppliers of reusable software compo-
nents have performed the domain analysis
(see section 2.0) correctly, without a bias to-
wards a specific architecture or proprietary
product, then these components should be
appropriate for most users. This underscores
the critical need to have a skilled component
assessor perform assessments so that many
appropriate components are placed in the 1i-
brary.

1.6 Assumptions

In developing the assessment criteria, the
following assumptions were made. Domain
analysis personnel and component develop-
ers, if not the same, must work together to
develop reusable components. In addition,
component developers and the assessor must
have access to the assessment criteria during
the development of the reusable components.
Without some guidance, the developed com-
ponents will not meet these criteria. In addi-

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

1999

13:22:13

tion, assessment tools based on the assess-
ment criteria must be available to assist the
component developers and component asses-
sors in the assessment task so that it does not
become overwhelming.

The concept of developing reusable compo-
nents is new to many component developers,
as are the assessment criteria. There are
many lessons to be learned which will result
in refining these criteria. As a reuse library
becomes populated with components, users
will identify good reusable components by
the number of accesses, extractions, and user
comments. This data and other metrics
should be used to refine the assessment crite-
ria.

2.0 DOMAIN ANALYSIS

Domain analysis is an approach to the analy-
sis and structuring of software requirements
aimed at facilitating reuse of software re-
quirements, design, code, and test informa-
tion across a domain. Performing a domain
analysis entails factoring out commonality
and factoring in generality. A domain is a set
of problems with similar requirements for
which a general solution can be developed.

Examples of aerospace applications domains
are identified below:

Control systems - Systems typically char-
acterized by stringent timing requirements,
processor and memory resource limitations,
and safety / fault tolerance requirements. Ap-
plications include systems for the control of
aircraft, missiles, satellites, and industrial
processes.

Signal processing systems - Systems
that analyze and respond to complex signals,
typically characterized by complex processing
algorithms on high performance hardware.
Applications include electronic warfare, intel-
ligence signal processing, and satellite image
processing.

Command and control systems - Sys-
tems that are typically characterized by signif-
icant man-in-the-loop involvement, complex
user interfaces and data bases, and coordina-
tion of distributed functions. Applications

Information Handling Services,

1999

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
1999 13:22:13

July 15,

ATIAA 6-010 93 E@ 0b95534 0001541 1be EW

include military C3I systems, communica-
tions network control systems, and ground
control systems for satellites.

The scope of a domain is typically set
through consideration of economic and tech-
nical factors associated with system imple-
mentation and the business objectives of the
organization. As such, the principal determi-
nation of a domain is whether software arti-
facts developed for one instance of the do-
main may be cost-effectively reused for
another instance.

The principal products of a domain analysis,
relevant to the assessment process, are:

Domain Definition - a working definition
of the domain that provides sufficient infor-
mation to determine whether a specific sys-
tem is a candidate for inclusion in the do-
main. The domain definition characterizes
the functional boundaries of the domain and
helps determine whether it will pay to reuse
existing domain components in a new Sys-
tem. This boundary may change throughout
the domain analysis process (and beyond) as
key economic and technical issues associated
with domain software reuse become more
clearly understood. The key determinant of
this boundary is the potential for cost-effec-
tive reuse of software components. After a
software reuse program has been imple-
mented, the domain definition can be further
refined based upon various usage metrics
which can be collected from suppliers and
users.

Conceptual Taxonomy - a definition of
domain terminology that provides an initial
basis for relating domain instances. The tax-
onomy includes any necessary thesaurus in-
formation to begin the process of correlating
different instances of the domain. It also in-
cludes structuring information to aid in the
understanding of how domain terms relate.
This is also often referred to as a domain
vocabulary.

Canonical Requirements Model - a de-
composition of the domain according to cri-
teria that are stable with respect to potential
variations among instances, along with de-
scriptions of services, performance criteria,

AIAA G-010-1993

constraints, and potential variations. Canoni-
cal requirements are the most important prod-
uct of domain analysis. They provide a
framework from which implementations of
specific instances may proceed without
recreating existing requirement information.

Tracz (Tracz 1987) states that: To answer the
question, “What software should be made
reusable?” it is helpful to rephrase the
question into two separate questions:

1. “What software is common among most
applications?” and

2. “What software is common within a
specific application domain?”

This provides two categories of software
which seem to be good candidates for reuse:
horizontally reusable and vertically reusable
components. Horizontal reuse refers to reuse
across a broad range of application areas
(such as data structures, sorting algorithms,
and user interface mechanisms). Vertical
reuse refers to components of software
within a given application area that can be
reused in similar applications within the same
problem domain. Horizontal reuse has been
studied the most to date (Booch 1987), and it
likely has occurred much more frequently
than vertical reuse. The main reasons for this
are that horizontal reuse is better understood
and easier to achieve. On the other hand, a
great potential leverage can come from verti-
cal reuse - by intensive reuse of carefully
crafted solutions to problems within an appli-
cation domain. The Naval Training Systems
Center (NTSC) Reuse Initiative project dis-
cussed in 2.1 is an example of vertical reuse.

2.1 Domain Analysis Approaches

As with any relatively new concept, the
methods used vary widely. Each new project
or team develops a new approach based upon
existing / previous methods modified with
their better idea. Domain analysis is no ex-
ception. Currently, there is not an estab-
lished technique for performing domain anal-
ysis. However, three aspects that most of the
methods have in common are:

» producing a domain-specific vocabulary;

Information Handling Services,

1999

AIAA 6-010 93 MM 0b695534 000l542 OT9 WA

AIAA G-010-1993

» partitioning the domain into more man-
ageable sub-domains; and

» creating a domain model.
Areas where the methods vary include:

+ the type of persons responsible for con-
ducting domain analysis;

» variation in the means for representing
their findings; and

 the use of the products.

There are a number of domain analysis meth-
ods that have been documented in the litera-
ture. This section briefly describes the ap-
proach currently being implemented in one
aerospace applications domain - the NTSC
Reuse Initiative. Excerpts from other ap-
proaches that may be of interest to the reader
will follow.

The NTSC Reuse Initiative project began
with a domain analysis of the flight simula-
tion domain that examined four simulators to
identify common classes of objects used in
flight simulation. The simulators examined
were the V-22 Operational Flight Trainer,
UH-1 Flight Simulator, P-3A/B Tactical
Navigation Modernization Operational Flight
Trainer, and C-17A Weapons System
Trainer. The domain analysis methodology
used under the NTSC Reuse Initiative was
based on the process developed by Dr.
Ruben Prieto-Diaz and consists of the follow-
ing steps:

1) Define the flight simulation domain
through top-down object-oriented
analysis.

+ Collect domain information and data.

 Identify domain bounds (for this project,
the customer specified flight simulation,
Ada, OOD).

» Identify the sample base (i.e., C-17, V-
22, P-3A/B, UH-1).

» Perform an object-oriented analysis to

identify the objects within the selected
sub-domains.

2) Classify the flight simulation domain enti-
ties through bottom-up analysis.

a) Identify the objects and operations from
the sample base.

* Analyze the existing design.

* Analyze the requirements.

« Extract the descriptors.

« Decompose the statements by keywords.

b) Abstract and classify the flight simulation
data.

e Group terms.

» Name clusters.

* Arrange by facets.

» Define standard classification templates.
» Construct the thesauri.

3) Derive the flight simulation models by
consolidating the top-down and bottom-
up approaches.

» Group the descriptors into classes.

» Use the class structure to create a generic
model.

+ Expand the models and classification.

4) Expand and verify the selected models
and classifications.

The objective of this domain analysis was to
produce a set of domain models which will
support the creation and reuse of software
objects for the NTSC Reuse Initiative. This
in turn supports reuse-based software devel-
opment. Domain models may range in com-
plexity from simple definitions of the domain
in terms of common requirements to a de-
tailed taxonomy and classification scheme or
an elaborate generic architecture. The domain

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

13:22:13

Information Handling Services, 1999

AIAA 6-010 93 M@ 0b95534 0001543 T35 WA

model produced for the NTSC Reuse
Initiative was a detailed taxonomy and classi-
fication scheme.

Other approaches to various aspects of do-
main analysis and related terminology are de-
scribed below.

Kang (1989) briefly summarizes an approach
to domain analysis:

Domain analysis is an activity to produce a
domain model, a dictionary of terminologies
used in a domain, and a software architecture
for a family of systems. The objectives of a
domain analysis are:

» facilitate reuse of domain knowledge in
systems development;

* define the context in which reusable com-
ponents can be developed and the
reusability of candidate components can
be ascertained;

* provide a model for classifying, storing,
and retrieving software components;

* provide a framework for tooling and sys-
tems synthesis from the reusable
components;

» allow large-grain reuse across products;
and

* identify software assets.

Based on Kang’s experience with domain
analysis (called features analysis in this pro-
ject) and the potential benefits from it, he be-
lieves that domain analysis should be a stan-
dard activity in the software development life
cycle.

Lee and Rissman (1989) describe their work
at the Software Engineering Institute (SEI) in
determining domain-specific software archi-
tectures.

Prieto-Diaz (1987) comments on the need to
define a domain boundary (i.e., where one
domain ends and another begins). He views
the domain-specific language as encapsulated
in a formal language and serving as a specifi-

AIAA G-010-1993

cation language for the construction of sys-
tems in the domain. Prieto-Diaz characterizes
this as the “reuse of analysis of information,”
and states the opinion that this “is the most
powerful sort of reuse.”

Prieto-Diaz also briefly summarizes the do-
main analysis approaches used by Raytheon
(in the work reported by Lanergan and
Grasso [1984]), and by McDonnell Douglas
(in the Common Ada Missile Packages
[CAMP] work).

Neighbors (1987) reports on the deliberations
of the Domain Analysis Working Group at
the Workshop on Software Reuse, held in
October 1987. The report states that “given a
domain analysis, an organization should be
able to: (1) use the domain model to check
the specifications and requirements for a new
required system in the domain; (2) educate
new people in the organization providing
them with the general structure and operation
of systems in the domain; and (3) derive op-
erational systems directly from the statement
of the system in domain specific terms.”

The AIAA Software Reuse Working Group
undertook the domain analysis of library
management systems as a practical problem,
with the same individuals serving as both
domain experts and domain analysts. Neigh-
bors (1987) describes the group’s activities in
some detail and concludes by giving the
following Basic Domain Analysis Process.

1) Establish the domain subject area.
2) Collect the domain experts.

3) Establish the depth of analysis (i.e.,
whether to analyze sub-domains).

4) Establish the width of analysis (i.e., de-
termine the boundary of the domain - “Is
this function required by most of the
systems built in this domain?”).

5) Define the specific domain objects, opera-
tions, relationships, and constraints.

6) Hand test the domain by attempting a de-
scription of a specific system in the
domain.

_

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:22:13 Information Handling Services, 1999

AIAA 6-010 93 W@ 0695534 0001544 971 W

AJAA G-010-1993

7) Package the domain for constructive
reusability by expressing it in a form for a
transformational refinement tool.

The working group members used various
analysis representations, including data flow
diagrams, entity-relationship diagrams, se-
mantic nets, object diagrams, and class hier-
archies with inheritance. They concluded that
usually only one each from the object hierar-
chy, data flow, and control flow representa-
tions would be needed.

Hutchinson and Hindley (1988) report on
their work in developing a domain analysis
method. Their goals were:

e to discover the functions that underwrite
reusability;

» to focus the domain specialist’s attention
on reuse;

* to help the domain specialist ascertain
reuse parameters;

» to discover how to redesign existing com-
ponents for reuse; and

* to organize any domain for reuse.

The domain analysis was performed by a
reuse analyst with the assistance of a domain
specialist, an individual with a full under-
standing of the problem domain. The re-
searchers developed structured domain anal-
ysis techniques based on questions devised to
assess a software component’s reusability.
The domain on which they based their exper-
imentation was a simulation of the utility
systems management (USM) system of the
Experimental Aircraft Programme (EAP) in
the United Kingdom. The sub-domains they
considered were propulsion, fuel manage-
ment, and undercarriage. In the case of
propulsion, this sub-domain was considered
for reuse because the controlled hardware
(the engines) would not change significantly
between the EAP implementation and the next
project. Fuel management was chosen be-
cause the domain appeared to contain consid-
erable functional duplication within the re-
quirements definition. Undercarriage was

chosen because much of its operation would
not change on future implementations.

The reuse analyst decided on three levels of
reuse to clarify the domain: the initial level
pertained to reuse of the whole system, the
next to reuse of subsystems, and the final to
functions at the requirements phase and to
components at the design and code phases.
The reuse analyst presented questions to the
domain specialist, based on the assumption
that it is domain-specific knowledge that can
isolate reusable components. The questions
seek to elicit identification of reuse attributes
and reusable components in an understand-
able manner. These questions are contained
in a list of domain analysis criteria in section
2.2

The authors observe that reuse proved to be
practical, even in the hardware-dependent ar-
eas being analyzed. They assessed the re-
quirements functions as potentially 75 percent
reusable for the next implementation, and in-
dicated that reuse could be equally high for
code -designed for reuse from these
requirements.

2.2 Domain Analysis Criteria

Using the documented domain analysis ac-
tivities summarized in section 2.1, a prelimi-
nary set of criteria for domain analysis was
developed. These criteria can be used by the
reuse analyst to determine the potential
reusability of components, to identify classes
of objects, and to describe the domain-spe-
cific vocabulary. The criteria in appendix A
are oriented specifically to eliciting data from
domain experts for reuse applications. These
criteria should help determine what software
should be made reusable.

3.0 COMPONENT
ASSESSMENT

Reuse may occur at any and all stages in the
software development life cycle, resulting in
benefits ranging from minuscule to consider-
able. Reusable components may alter only
the implementation of a software develop-
ment effort or they may impact the design.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

1999

13:22:13

Information Handling Services,

1999

L S .

ATIAA 6-010 93 MR 0L95534 0001545 &0 WM

The most valuable tools and components will
alter the entire scope and structure of soft-
ware development efforts in which they are
used, saving large quantities of time for engi-
neering, development, and testing.

Good reusable software provides needed
functionality and is substantially less expen-
sive to reuse than to recreate. For small
components like primitive math functions and
data structures, the cost of reuse depends
heavily on the quality of the reusable compo-
nent. Components which use meaningful
naming conventions and reasonable coding
standards are more easily understood and less
expensive to reuse. Since the software may
have to be modified, the component develop-
ers should be able to examine the code and
make changes without introducing errors or
triggering undocumented side effects.

As components increase in size, the cost of
reuse becomes more closely tied to the clean-
ness of the abstractions supported by the
reusable components and to the amount of
interface and code documentation provided
with the components. Ideal components
would, as a minimum, include: design doc-
uments, code, test procedures, test data, and
test results. Modules whose data types and
entry points are tightly cohesive are more
casily understood. Modules which are
loosely coupled are more easily reused.
Reusable components should avoid hidden
side effects, should not reference global data
structures or hardware devices that may not
be present when it is reused, and should ex-
port clear, concise, cleanly abstracted inter-
faces.

The assessment criteria in Appendix B sup-
port the verification of a single or a small set
of related properties for reuse.

These criteria fall into the following
categories:

* Domain Assessment
* Reuse Assessment
- Internal Documentation

- Machine Dependencies

AIAA G-010-1993

- Logic and Functionality
- Avionics Domain
* Software Assessment
- Identifiers
- Local Programming Practices
- Tasking Semantics
- Application of Generics

- Global Programming Practices

4.0 REUSE LIBRARY

Once constructed, components must be clas-
sified and placed in a reuse library designed
to minimize the time and effort required to
find and extract potentially reusable compo-
nents. The apparatus for storing and manag-
ing software contributes greatly to its usabil-
ity. That apparatus should include a software
library and an intelligent scheme for classify-
ing software so that user searches are suc-
cessful in finding components that match, or
if there is not an exact match, then identify-
ing components whose characteristics are
close to those attributes specified. To facili-
tate browsing through an unfamiliar library,
software should be designed, classified, and
retrieved using a vocabulary that is appropri-
ate to the set of objects and operations ma-
nipulated, the set of services provided, and
the domain of anticipated reuse.

Criteria that should be considered when eval-
vating alternative library systems are
contained in Appendix C.

4.1 Emerging Issues - Software
Reuse Library Support for a Reuse
Process

A software reuse library capable of
supporting a reuse process is essential to
realize the full potential of reuse (Kitaoka
1990). In this library we must place an
expansive set of software life cycle work
products which includes software
architectures, specifications, designs, data,
code, tests, and other useful information.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
1999 13:22:13

July 15,

Information Handling Services,

1999

ATAA 6-010 93 M@ 0&95534 0001546 744 I

AIAA G-010-1993

Reuse of this information will only occur if
reuse is incorporated into all activities of the
software life cycle process with ready access
to the work products which can be
accomplished with a software reuse library.

Reuse can be incorporated into most software
life cycle processes and a software reuse li-
brary should be able to support the reuse pro-
cess. A software reuse library can support
the reuse process in areas such as domain
analysis, assessment of potential library
components, prototyping, design, implemen-
tation, configuration management, quality as-
surance, and maintenance,

After performing domain analysis and gen-
erating a profile of software reuse library
users, the software reuse library interface can
be tailored to reduce the effort of users by
providing repository capabilities which sup-
port the activities defined for their respective
roles in domain technology. To provide a
user-friendly and efficient interactive inter-
face, for example, the library retrieval mech-
anism should be based on the classification
taxonomy produced during domain analysis,
and present the access capabilities in the rele-
vant terminology supplied by the domain
analysis process.

To assist in reusing prototypes, the software
reuse library can store guidelines for reusing
prototype components. To allow the ex-
change of graphic design representations
among design tools, the software reuse li-
brary can store information about the graph-
ics design representation so the user can se-
lect the proper tools for analyzing the design.
As components are submitted to the library,
assessment tools integrated into the library
can assist quality assurance in determining
the reusability of the component. The library
can also support configuration management
with an integrated configuration control sys-
tem to track component revisions and insure
the appropriate construction of compound
components.

The software reuse library is essential to the
support of a software reuse process and must
become an integral part of the software sup-
port environment. The issues involved in
supporting reuse in software systems devel-

opment are applicable to many of the soft-
ware life cycle processes in use today. The
success of a particular repository implemen-
tation is the extent to which the repository ac-
tivities in each activity of the reuse process
will reinforce software reuse activities as the
software engineer uses the environment to
create and support the software in a system.

4.2 Emerging Issues - Library
Interoperability

In the current state of the art, a reuse library
is hosted on a single platform and is not in
any way integrated with reuse libraries on
other platforms. This lack of integration cre-
ates an impediment to reuse since reuse li-
brary users cannot conveniently access in-
formation stored in multiple libraries. To
overcome this impediment, the Software
Technology for Adaptable, Reliable Systems
(STARS) Reuse Concepts (CONOPS) doc-
ument proposes seamless library interoper-
ability: the creation of a truly seamless envi-
ronment for library users, in which the
boundaries between libraries are transparent
to the user and a convincing illusion of a
single library is formed.

The STARS contribution to library interoper-
ability is the Asset Library Open Architecture
Framework (ALOAF). The ALOAF pro-
vides a standard format for interchanging data
among asset libraries and a standard service
interface to support the capabilities of asset
library systems. These standards form a
foundation for library interoperability.

The STARS Demonstration Asset Library
System (DALS) will be a prototype library
system used to support the STARS Library
Interoperability Demonstration. DALS will
use ALOAF services and the ALOAF data
format to demonstrate nearly seamless library
interoperability. Although a DALS user will
be aware that libraries exist on different plat-
forms, that user will be able to access any
remote library maintained by a DALS
implementation conveniently.

From a functional perspective, DALS will
provide the user with the ability to browse a
catalog of reusable software assets. Depend-
ing upon the toolset provided by a particular

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

1999

13:22:13

Information Handling Services,

1999

AIAA 6-010 93 EE 0595534 000L547 b&0D WM

DALS implementation, users will be able to
see either a graphical or textual view of the
catalog. DALS will also provide the user
with the ability to import data from and ex-
port data to an external file. This capability
will support asset interchange among asset
libraries managed by DALS implementations.

5.0 CONCLUSION

Reuse of software components is one of the
most viable approaches to reducing the esca-
lating costs of software development. Identi-
fying and classifying these components so
that they can be easily identified and accessed
by software developers is key to the success-
fu] implementation of a reuse approach. The
methods for classifying components into a li-
brary can vary significantly. One method,
domain analysis, has been used to specify a
vocabulary and model as the framework of a
reuse library.

This Guide recommends that domain analysis
be performed when implementing reuse.
There are various approaches to performing a
domain analysis which have been provided in
a brief survey; however, no single approach
is recommended. It further recommends cri-
teria to be used as a guide during domain
analysis.

Once domain analysis has been completed,
and the software developer has identified
candidate components, the components need
to be assessed against both general and do-
main-specific criteria. A set of criteria to be
used as a baseline for assessing domain fit-
ness, reuse, and software is also provided.
The results of this assessment, assessment
criteria, and the assets themselves can be
stored in a reuse library to reduce further the
cost of identifying and analyzing reusable
components.

6.0 GLOSSARY

Asset: Any unit of information of current or
future value to a software-intensive systems
development and / or PDSS enterprise. As-
sets may be characterized in many ways in-
cluding as software-related work products,
software subsystems, software components,

ATAA G-010-1993

contact lists for experts, architectures, do-
main analyses, designs, documents, case
studies, lessons learned, research results, and
seminal software engineering concepts and
presentations

Asset Library: A collection of software
assets controlled by an asset library system.
Typically, asset libraries are implemented
using an asset library system, which is a
computer-based system designed to facilitate
the reuse and sharing of software assets. As-
set libraries provide a set of services that
support qualifying, reusing, and managing
software assets. See the Asset Library Open
Framework reference for a discussion of
these services.

Component: One of the parts that make up
a software-intensive system. A component
may be hardware or software and may be
subdivided into other components.

Domain: An area of activity or knowledge.
Domains can be characterized as application,
solution, horizontal, or vertical.

* Application Domain: The knowledge
and concepts that pertain to a particular
computer application. Examples include
battle management, avionics, C3I, and
nuclear physics.

* Horizontal Domain: The knowledge
and concepts that pertain to the particular
functionality of a set of software compo-
nents that can be utilized across more than
one application domain. Examples in-
clude user interfaces, database systems,
and statistics. Most horizontal domains
can be organized as a set of equivalence
classes where the distinguishing charac-
teristics are software decomposition style
(functional, object-oriented, data-
oriented, control-oriented, or declarative),
conceptual underpinning, and/or required
hardware. One example is subdividing
user interfaces into terminal supporting
versus bit-mapped, mouse input
supporting.

* Vertical Domain: The knowledge and
concepts that pertain to a particular

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
1999 13:22:13

July 15,

Information Handling Services,

1999

AIAA 6-010 93 E® 0b95534 0001548 517 WA

AIAA G-010-1993

application domain. Vertical domains can
be organized as a hierarchy of sub-
domains that specialize the knowledge
and concepts as one moves from the root
to the leaves. Most application domains
can be organized as into a vertical domain
hierarchy.

Domain Analysis: The process of identi-
fying, collecting, organizing, analyzing, and
representing a domain model and software
architecture from the study of existing sys-
tems, underlying theory, emerging technol-
ogy, and development histories within the
domain of interest.

Domain Engineering: The construction of
components, methods, and tools and their
supporting documentation to solve the prob-
lems of system / subsystem development by
the application of the knowledge in the
domain model and software architectures.

Domain Model: A definition of the func-
tions, objects, data, and relationships in a
domain.

Domain-specific Language: A machine
processable language whose terms are de-
rived from the domain model and that is used
for the definition of components.

Framework: A skeletal structure to support
or enclose something. The skeletal structure
in these reuse documents is a conceptual
structure that delimits the concepts being dis-
cussed, supports understanding and technical
transition, and promotes evolution.

Life Cycle: All the activities an asset is
subjected to from its inception until it is no
longer useful. A life cycle may be modeled
in terms of phases, which are often character-
izations of activities by their purpose or
function such as design, code, and test.

Process: A series of steps, actions, or
activities to bring about a desired result.

Process Definition: An instantiation of a
process design for a specific project team or
individual. It consists of a partially ordered
set of process steps that is enactable. Each
process step may be further refined into more

10

detailed process steps. A process definition
may consist of (sub-) process definitions that
can be enacted concurrently.

Reengineering: The process of examining,
altering, and reimplementing an existing
computer system to reconstitute it in a new
form.

Reverse Engineering: The process of
analyzing a computer system to identify its
components and their interrelationships.
Same as design recovery.

Reuse: The transfer of expertise. In soft-
ware engineering, reuse often refers to the
transfer of expertise encoded in software re-
lated work products. The simplest form of
reuse from software work products is the use
of subroutine / subprogram libraries for
string manipulations or mathematic calcula-
tions. The simplest form of reuse of exper-
tise not represented in software work prod-
ucts is the employment of a human
experienced in the desired endeavor.

Reuse Engineering: The application of a
disciplined, systematic, quantifiable approach
to the development, operation and mainte-
nance of software with reuse as a primary
consideration in the approach.

7.0 REFERENCES

Booch, G. Software Engineering with Ada.,
Benjamin/Cummings Publishing Comp.,
Inc., Menlo Park, CA, 1987

Cohen, J. “GTE Software Reuse for Infor-
mation Management Systems,” in Proceed-
ings of the Reuse in Practice Workshop, eds.
J. Baldo and C. Braun, Software Engineer-
ing Institute, Pittsburgh, PA, July 1989.

Common Flight Simulator Components, Pre-
pared for the NTSC Reuse Initiative Project,
Contract No. N61339-90-C-0135, SAIC,
Orlando, FL., August 1991.

Flight Simulation Domain Vocabulary, Pre-
pared for the NTSC Reuse Initiative Project,
Contract No. N61339-90-C-0135, SAIC,
Orlando, FL, August 1991.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

1999

13:22:13

Information Handling Services,

1999

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

AIAA 6-010 93 M 0o95534 000L549 453 WA

Hooper, J. W. and Chester, R. O. Software
Reuse Guidelines, Prepared for the U.S.
Army Institute for Research in Management
Information, Communications and Computer
Sciences, Oak Ridge, TN, December 1989.

Hutchinson, J.W. and Hindley, P.G. “A
Preliminary Study of Large-Scale Software
and Re-use” in Software Engineering Jour-
nal, Vol. III, No. 5, pp 208-212, September
1988.

Informal Technical Report for the STARS,
Asset Library Open Architecture Framework,
February 1992.

Informal Technical Report for the STARS,
STARS Reuse Concept, February 1992.

Kang, K. C. “Features Analysis: An Ap-
proach to Domain Analysis,” in Proceedings
of the Reuse in Practice Workshop, eds. J.
Baldo and C. Braun, Software Engineering
Institute, Pittsburgh, PA, July 1989.

Kitaoka, B. J. “Repository Support for a
Reuse Process,” presented at the Eighth An-
nual National Conference on Ada
Technology, Atlanta, GA, March 1990.

Lanergan, R. G. and Grasso, C.A. “Soft-
ware Engineering with Reusable Design and
Code,” IEEE Trans. on Software Engr.,
IEEESE10(5), 498-501, September 1984.

Lee, K. J., and Rissman, M. “Application of
Domain-Specific Software, Architectures to
Aircraft Flight Simulators and Training
Devices,” in Proceedings of the Reuse in

ATAA G-010-1993

Practice Workshop, eds. J. Baldo and C.
Braun, Software Engineering Institute,
Pittsburgh, PA, July 1989.

Neighbors, J. M. “Report on the Domain
Analysis Working Group Session,” in Pro-
ceedings of the Workshop on Software
Reuse, eds. G. Booch and L. Williams,
Rocky Mountain Inst. of Software
Engineering, Boulder, CO, October 1987.

Peterson, A. S. “Coming to Terms with
Software Reuse Terminology: a Model-
Based Approach,” in ACM SIGSOFT,
Software Engineering Notes, Vol 16, No. 2,
pp. 45-51 , Software Engineering Institute,
Pittsburgh, PA, April 1991.

Prieto-Diaz, R. STARS Reuse Library
Process Model, SAIC, Orlando, FL, March
1991.

Prieto-Diaz, R. “Domain Analysis for
Reusability,” in Proceedings of Compsac 87,
pp. 23-29, Tokyo, Japan, October 1987.

Tracz, W. “RECIPE: A Reusable Software
Paradigm,” in Proceedings of the Twentieth
Hawaii International Conference on System
Sciences, pp. 546-55 eds. B.D. Shriver and
R. H. Sprague, Jr., Kailua-Kona, HI,
January 1987.

Tracz, W. “Software Reuse Rules of
Thumb,” in The Software Practitioner, Vol 1,
No. 2, pp. 8-11, published by Computing
Trends through the State College of
Pennsylvania, March/April 1991.

11

13:22:13

Information Handling Services, 1999

AIAA 6-010 93 EB 0b95534 0001550 175 1N
AJAA G-010-1993

12

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:22:13 Information Handling Services, 1999

AIAA G-010 93 W8 0b95534 0001551 001 WM

AJAA G-010-1993

APPENDIX A
DOMAIN ANALYSIS CRITERIA

Al.1 Is component functionality re-
quired on future implementations?
(Determine what is common between current
versions and future applications.)

Al.2 How common is the component’s
function within the domain? Is there duplica-
tion of the component’s function within the
domain? Items to consider:

a) common implementation language;

b) written for the same operating system;
¢) uses the same database system;

d) has the same user interface; and

e) works on the same hardware platform.

Al.3 Is the component hardware de-
pendent? If so, does the hardware remain
unchanged between implementations? Can
the hardware specifics be removed to another
component? (Highly desired)

Al.4 Is the design sufficiently opti-
mized for the next implementation? (Desired,
but not mandatory)

Al.5 Can we parameterize a non-
reusable component so that it becomes
reusable? (Mandatory)

Al.6 Is the component easily tailorable?
(Highly desired)

Al.7 Can the design / code be feasibly
modified to make it reusable? Items to
consider:

a) Can operations that work on the same
kind of data be grouped?

b) Can global data be eliminated or encapsu-
lated in modules along with the opera-
tions that manipulate it?

¢) Can implementations be separated from
interfaces (program families)?

d) Can algorithms be generalized to work on
different:

¢ hardware,

¢ operating systems,

s 1/O devices,

* user interfaces, or

e data structures / data bases?

e) Can virtual interfaces be defined to
separate:

* hardware,

* operating system,

* 1O,

¢ user interfaces, or

» data structure/database dependencies?
Al.8 Can a nonreusable component be
decomposed to yield reusable components?
How valid is component decomposition for
reuse? (Consider modification issues above)
Al.9 Is a standard software architecture
defined that shows how the component re-
lates to one another in the system? Elements
of a standard architecture definition include:
a) static decomposition,
b) dynamic behavior, and
¢) interfaces.
A1.10 Is there a classification of the
application domain that characterizes the
component? (Highly desired, especially if
reusable component is to be placed in a reuse

library)

A1.11 Is the interface of the component
well defined, including its relation to other

13

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

13:22:13

Information Handling Services, 1999

AIAA 6-010 93 M 0695534 0001552 Tya HE

AIAA G-010-1993

application software? The interface definition
for the component includes:

a) purpose of the interface(s);

b) data formats and flows interaction
protocols;

¢) fault handling; and

d) physical and hardware configuration.
A1.12 Are the requirements and limita-
tions that the component places on the system
well defined? System limitations to be

considered are:

a) hardware (computing / sensor / control)
constraints;

b) adherence to specific protocols;
c) use of a generic architecture;

d) requirements for other components /
software;

e) timing / sizing / size / weight / power
constraints; and

f) exceptions / fault handling.

A1.13 Are the adaptation requirements
clearly defined? Adaptation requirements to
be considered are:

a) flexibility in operations;

b) mission adaptation;

¢) environments / site adaptation;

d) platform adaptation;

e) user adaptation; and

f) technology adaptation including:

1) hardware technology

* computing architecture

* computing capabilities (size, weight,
power, speed, memory)

14

* communications

* sensors

¢ control mechanisms

* interface standards

2) software technology

» languages

* tools

» architectures

* interface standards.
A1.14 Does the adaptation mechanism(s)
provided by the component meet the stated
adaptation requirements? (Highly desired)
A1.15 What system requirements has the
component been engineered to meet?
(Documentation should state the requirements
this component satisfies.)
A1.16 What requirements / qualities have
been emphasized? What has been compro-
mised as a result? (Documentation should
state if portability or efficiency has been
stressed.)
A1.17 What analysis has been performed
to guarantee the component meets these re-
quirements? Aerospace software qualities or
characteristics to be considered are:
a) real-time requirements;
b) embedded environments;

c) detailed algorithmic requirements;

d) severe efficiency (time and space)
requirements;

e) fault tolerance requirements;
f) survivability requirements; and

g) security requirements.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
1999 13:22:13

July 15,

Information Handling Services,

1999

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

1999

AIAA 6-010 93 MM 0695534 0001553 984 W

AJAA G-010-1993

APPENDIX B
COMPONENT ASSESSMENT CRITERIA

B1.1
Criteria

Domain Assessment

Domain criteria focus on the extent to which a
particular component satisfies the profile of
the domain under study.

* Does the component actually belong to
the domain?

* To what extent does the component fit
into the domain?

* To what extent does the component fit
into the domain architecture?

* To what extent does the component fit
into the generic requirements?

B1.2 Reuse Assessment

Criteria

Reuse criteria focus on the potential value of
a component to other applications / projects.

B1.2.1 Internal Documentation

Description

The source text is inspected by the assessors
who are checking for compliance with com-
ment and documentation requirements.
Spelling and grammatical errors, layout of
headers, copyright notices, descriptions of
what the part does, and implementation and
machine dependencies are the types of things
checked.

Items

a) Is there a description of what the reusable
part does? Does the description conform
to standards? The description should
explain what the part does, not how or
why it does it. The description should
contain, as a minimum, a purpose,
inputs, outputs, and processing. This

b)

d)

€)

g)

h)

description should be in the specification
header.

Are the following documented?

* Author (Optional)

* Date (Optional)

* Copyright Notices (Mandatory)
* Name of Product (Mandatory)
* Project Name (Optional)

* Revision History (Mandatory)

Is the spelling correct in the header and all
comments? (Spelling errors must be cor-
rected before the component is placed in
the library.)

Is the grammar correct in the header and
all comments? (Grammatical errors must
be corrected before the component is
placed in the library.)

Is there a description of how to use the
reusable part? Does it conform to stan-
dards? (As a minimum, the description
should contain enough information for
the user to be able to use it without
having to look at the source code.)

Is there a comment documenting assump-
tions made by the reusable part? (None is
acceptable.)

Are features that are likely to change
documented? (None is acceptable.)

Are all conditions under which an excep-
tion is raised documented (by subpro-
gram declaration)? (None is acceptable.)

Is the analysis and derivation of numeri-
cal aspects of the reusable part docu-
mented? (As a minimum, the description
should contain enough information for

15

13:22:13

Information Handling Services, 1999

AIAA 6-010 93 MM 0bLA5534 0001554 310 WA

AIAA G-010-1993

h),

k)

D

the user to be able to use it without
having to look at the source code.)

Are regression tests and their expected re-
sults provided for the reusable part? If
not, is there a section that explains why?
(It is strongly suggested that all compo-
nents have accompanying tests and
expected results before being accepted
into the library.)

Is the testing and other verification of the
reusable part documented? (Mandatory)

Is whether the reusable part can be used
in a concurrent processing environment
documented? (Optional)

m) Are any dependencies on other units

n)

p)

Q)

16

documented? (None is acceptable.)

Is the basis for design decisions docu-
mented? (An ideal component would
have its original software development
folder which would contain this
information.)

Are all known constraints on how the
code can be changed documented?
(Desirable, but not mandatory.)

Is the extent to which the behavior of the
reusable part is affected by known com-
piler implementation dependencies docu-
mented? (It is highly desirable that all
known compiler implementation
dependencies be removed.)

Are all known constraints that must be
satisfied by the parameters documented?
(Highly desirable if these constraints can
be eliminated.)

Are the checks that must be / are made for
invalid use of the reusable part
documented?

» Checks made by the reusable part.

e Checks that must be made by the
client of the part.

Does the implementation primarily
conserve space or conserve time?

B1.2.2 Machine Dependencies
Description

In this section, anything that is dependent on
the machine or avoids dependence on the ma-
chine is inspected. In general, all of the
following items should be enforced.

Items

a) Have rules been included that list the ac-
curacy limits of the target machines? Are
programming practices such that they do
not press these accuracy limits?

b) Does the reusable part assume no more
and no fewer than 16 bits for INTEGER
types?

¢) Does the reusable part assume no more
and no fewer than 6 decimal digits of
precision available for floating point

types?

d) Does the reusable part assume no more
and no fewer than 32 bits available for
fixed point types?

e) Does the reusable part assume no more
and no fewer than 72 characters per line
of source text?

f) Does the reusable part assume no more
and no fewer than 16 bits for universal
integer expressions?

g) Does the reusable part assume that the
range of DURATION is -86_400 ..
86_400 seconds?

h) Does the reusable part assume that the
value for DURATION’S MALL is 20
milliseconds?

i) Are representation clauses used to specify
the collection size for access types? This
is an acceptable exception to the guideline
to minimize the use of representation
clauses.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

1999

13:22:13

Information Handling Services, 1999

4 e . AR =

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

1999

AIAA 6-010 93 MR 0b95534 000L555 757 1M

B1.2.3 Logic and Functionality
Description

The items in this section are used as a guide
for assessors who are checking the logic and
functionality of the reusable part. These
items require judgment calls on the part of the
assessor.

Items

a) Is complete functionality provided in a
reusable part or set of parts?

b) Are generic units built to anticipate
change? Do generic units use generic
parameters to facilitate flexibility?

¢) Is Ada’s generic construct exploited to
create readily adaptable parts that can be
instantiated to provide specific function-
ality using generic subprogram
parameters?

d) Does the functionality provided match
that described?

B1.2.4 Avionics Domain
Description

The items in this section are used as a guide
for assessors who are checking avionics do-
main-specific aspects of the reusable part.
These items require domain expertise on the
part of the assessor.

Items

a) There are certain instances where it is de-
sirable to use access types to address
static objects in embedded real-time appli-
cations. Certain Ada compilers support
only limited types of parameters when
pragma INTERFACE is used (e.g., to
assembly language, C, or some other
language selected for efficiency or inter-
face requirements), and access types are
usually one of those supported when
other static types, such as record
structures, are not.

AJAA G-010-1993

b) If memory considerations are a concern,
are short-circuits used over IF
statements?

¢) Has overhead execution time been mini-
mized for procedure calls? A potential
run-time efficiency advantage of blocks is
memory savings. If a declare statement is
used in the block, the resources for data
which are local to the block will only be
allocated when the block is entered.
Additionally, some compilers may deallo-
cate these memory resources after the
block is exited.

d) Has the use of Exit’s been avoided?
Exit’s should not be used because they
can greatly increase run time if the code at
the exit address has to be paged into
working space.

e) Is the pragma INLINE used where call
overhead is of paramount concern?

f) Has suppression of exception checks
been minimized during operation?

g) Is pragma SHARED used only when
forced by run time system deficiencies?

h) Have hardware and implementation de-
pendencies been encapsulated in a
package or packages?

1) Have the objectives been clearly indicated
if machine or solution efficiency is the
reason for hardware or implementation
dependent code?

j) Have interrupt receiving tasks been
isolated into implementation dependent
packages?

k) Has the DELLAY statement been used with
caution when timing accuracy is
essential?

B1.3
Criteria

Software Assessment

Software criteria focuses on providing guid-
ance in developing reusable software
components.

17

13:22:13

Information Handling Services,

1999

AIAA 6-010 93
AIAA G-010-1993

B1.3.1 Identifiers
Description

The naming and declarations of constants,
variables, subprograms, etc., are inspected in
this section. Appropriate use of constants is
also checked.

Items

a) Are application-independent but meaning-
ful (application specific) names used for
the reusable part and its identifiers?
(Mandatory)

b) Have abbreviations in identifier or unit
names been avoided? (The only excep-
tion is that an abbreviated format for a
fully qualified name can be established
via the RENAMES clause.)

c) Have the predefined numeric types in
package STANDARD been avoided?

d) Are literal expressions represented in a
radix appropriate to the reusable part?
(Decimal and octal numbers should be
grouped by three’s counting from each
side of the radix point. Hexadecimal
numbers should be grouped by four’s
counting from each side of the radix
point.)

€) Are pragmas and attributes added by the
implementor avoided?

f) Are the package SYSTEM constants only
used when generalizing other machine
dependent constructs? (Mandatory, since
the values in this package are implemen-
tation-provided, unexpected effects can
result from their use.)

B1.3.2 Local Programming
Practices

Description
The source text is inspected for compliance

with programming practices requirements and
known specific problems in program logic.

18

0595534 0001556 693 A

Items

a)

b)

9

d)

g

h)

L)

k)

Are default values provided for any pa-
rameters not included in the original part?

Is the size of local variables dependent on
the actual parameter size where possible?

Has reusable code been structured so that
the compiler can exploit dead code
removal where it is supported by the
implementation?

Is dependence on the order in which Ada
constructs are evaluated avoided?

» If a subprogram changes the value of
an actual parameter, are there no
instances where a variable and a call
to the subprogram with the variable as
the actual parameter are evaluated as
part of the same expression?

Are specifications of packages and their
bodies separated? (Mandatory.)

Are relational tests done with "<=" and

">=" instead of "<",">", "=", and "/="?
(Mandatory.)

Is "=" never used on real operands as a
condition to exit a loop?

Is the depth of nested expressions and
control structures restricted to 5? (This
number can be modified for each pro-
gram. It is suggested that the maximum
number of nesting levels be kept between
three and five.)

Are values of type attributes used in com-
parisons and checking for small values?

Are exception handlers provided for
CONSTRAINT_ERROR and NU-
MERIC_ERROR? (Recommended. Ei-
ther of these exceptions may be raised
and exception handlers should be
prepared to handle either.)

Are implementation-defined exceptions
avoided?

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:22:13

Information Handling Services, 1999

D

AIAA 6-010 93 M C%95534 0001557 52T W

Is the use of representation clauses iso-
lated? (The Ada LRM does not require
that these clauses be supported for all
types. Therefore, isolating representation
clauses will minimize the impact of any
changes necessitated by a port. The two
exceptions to this guideline are for task
storage size and access collection size,
where portability may be enhanced
through their use.)

m) Are default parameters provided for

n)

p)

q)

s)

t)

special usage subprograms and entries?

Are default parameters placed at the end
of the formal parameter list?

Are long fully qualified names renamed to
reduce complexity? (Desired, but not
mandatory. An abbreviated format for a
fully qualified name can be established
via the RENAMES clause. This capabil-
ity is useful when a very long fully quali-
fied name would otherwise occur many
times in a localized section of code.)

Are declarations, renamed for visibility
purposes, used instead of using the USE
clause?

Are 'RANGE, 'FIRST, 'LAST,
'LENGTH used instead of constants or
variables where appropriate to access ar-
ray elements? (Desired, but not
mandatory.)

If 'RANGE, 'FIRST, 'LAST,
'LENGTH is used, is there testing for
null arrays?

Are range declarations used instead of
INTEGER types where range values are
known?

Are indices of arrays declared as a named
discrete type?

Are named types used instead of anony-
mous types? (Although Ada allows
anonymous types, they have limited use-
fulness and complicate program modifi-
cation. For example, a variable of
anonymous type can never be used as an
actual parameter because it is not possible

ATAA G-010-1993

to define a formal parameter of the same
type. Even though this may not be a limi-
tation initially, it precludes a modification
in which a piece of code is changed to a
subprogram. Also, two variables de-
clared using the same anonymous type
declaration are actually of different

types.)

v) Is data initialization located in the
declarative part of the subprogram unit?

w) Declare parameters in a consistent order.
A suggested order is:

* All IN parameters without default values
are declared before any IN OUT
parameter.

 All IN OUT parameters are declared
before any OUT parameters.

* All parameters with default values are
declared last.

* The order of parameters within these
groups is derived from the needs of the
application.

X) Are data parameters placed before control
parameters (options)?

B1.3.3 Tasking Semantics
Description

This section checks for the correct and best
use of task objects.

Items

a) When declared in the same declarative
list, is the order in which task objects are
activated not dependent upon?

b) Is arepresentation clause used to identify
the expected stack requirements for each
task? This is an acceptable exception to
the guideline, *“Avoid the use of
representation clauses.”

¢) Are timing requirements dependent on the
pattern of execution task?

19

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

13:22:13

Information Handling Services, 1999

AIAA 6-010 93 E® 0L95534 0001558 4bb WE

ATAA G-010-1993

d) Do the tasking semantics of the program
avoid dependence on a specific value of a
delay?

e) Are busy waiting loops never used
instead of a delay?

f) Is polling limited to those cases where it
is absolutely necessary?

g) Is only the pragma PRIORITY used to
distinguish general levels of importance?

h) Has dependence upon the order in which
guard conditions are evaluated or on the
algorithm for choosing among several
open select alternatives been avoided?

i) Has sharing of variables between tasks
been avoided?

j) Do tasks communicate only through the
rendezvous mechanism?

k) Have shared variables as a task
synchronization device been avoided?

1) Is the pragma SHARED used only when
forced by run time system deficiencies?

m) Is the ABORT statement avoided?

n) Are interrupts passed to the main tasks
via a normal entry?

0) Are task specifications and package spec-
ifications provided as separate entities?

B1.3.4 Application of Generics
Description

This section checks for the correct and best
use of generics.

Items

a) Are iterators provided for traversing
complex data structures within reusable
parts?

b) Are families of generic or other parts with
similar specifications created?

20

¢) Is named association used when instan-
tiating generics with many formal
parameters?

d) Is RENAME used instead of the USE
clause to facilitate modification?

e) In generic units with a lot of subprogram
parameters, are default parameters of null
subprograms provided?

B1.3.5 Global Programming
Practices

Description

The source text is inspected for compliance
with programming practice requirements in-
volving a group or package of reusable parts.

Items

a) Are symbolic constants and constant ex-
pressions used to allow multiple depen-
dencies to be linked to a single or small
number of symbols?

b) Are exceptions propagated out of reusable
parts?

¢) Have dependencies on the exact loca-
tions, at which predefined exceptions are
raised, been avoided?

d) Has the use of non-standard character
sets been avoided?

e) Is the main program procedure free of
parameters?

f) Are hardware and implementation depen-
dencies encapsulated in a package or
packages?

g) Have interfaces with other languages
been isolated?

h) Are all subprograms employing the
pragma INTERFACE to an implementa-
tion dependent (interface) package
isolated?

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:22:13

Information Handling Services, 1999

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

AIAA 6-010 93 EE 0L95534 000L559 3T2 WM

AJTAA G-010-1993

APPENDIX C
REUSE LIBRARY CRITERIA

Cl.1 What is the approach to compo-
nent classification?

(At present, no single classification scheme
has been determined to be the definitive
method. Each organization setting up a reuse
library will have to do an analysis to deter-
mine which scheme is appropriate for their
needs.)

C1.2 Is the library information model
well-defined and adaptable?

The library information model should fully
describe the objects, attributes, and
relationships of the reuse library system.

C1.3 Does the library tool set provide
needed capability?

To provide a library that is easy to use and
efficient for the developer, the user interface
must be tailorable to the selected software
domain. This involves the separating of
functions of the library from the functions
surrounding the use of the library and pre-
senting the user with a view of the library in
domain specific terms. The vocabulary cre-
ated in the domain analysis task is used in
customizing the interface.

Each organization should determine if the li-
brary has the following set of associated tools
or capability: search, file browser, extrac-
tion, supply, catalog, problem reporting, and
configuration management system.

C1.4 Does the library support multiple
domains?
C1.5 Is there a library search tool?

A library search tool provides for searching
of the library based on the classification
scheme, keywords and attributes.

C1.6 Is there a file browser?

A file browser allows the user to look at the

component that has been retrieved.

C1.7 Is there an extraction tool?

An extraction tool allows the user to copy an
asset from the reuse library to be reused.
C1.8 Is there a supply?

A supply is an interactive process that allows
users to submit software for inclusion in the
library.
C1.9 Is there a catalog function?

This function provides the capability to create

an updated catalog of abstracts for each
component in the library.

C1.10
system?

Is there a problem reporting

A problem reporting system allows the users
of the library to report problems with the li-
brary system or with the components
retrieved.

C1.11 Is there a configuration manage-
ment system?

To be able to manage a large number of files
with multiple versions, the library should
provide a configuration management capabil-
ity or provide an interface to a configuration
management system.

C1.12 Does the library accommodate a
continually expanding collection of
components?

There should be no limitation to the number
of components submitted to the library other
than the physical limitations of storage space
of the library hardware.

C1.13 Does the library support finding
similar components, not just exact matches?

21

13:22:13

Information Handling Services, 1999

AIAA 6-010 93 BB 0695534 000L560 OL4 EE

ATAA G-010-1993

In addition, the library should have the means
whereby the user can broaden or narrow the
search automatically.

C1.14 Does the library support a domain
vocabulary and class structure which can be
very precise and have a high descriptive
power?

Both are necessary conditions for classifying
and cataloging software.

C1.15 Does the library support a
thesaurus capability?

This is highly desirable for libraries which
have a large number of infrequent users.

C1.16 Is it easy to maintain (i.e., add,
delete, and update) the class structure and vo-
cabulary without need for reclassification of
existing components?

This is highly desirable for libraries with a
large number of components.

C1.17 Is the library easily usable by both
the librarian and the end user?

Ease of use for both is highly desirable,
however, if the ease of use favors one over

22

the other, it should be toward the end user.
The end user may be a one-time or infrequent
user, where ease of user is critical. Since the
librarian will be using the library daily, ease
of use is not as critical.

C1.18 Does the library support the ca-
pability to specify the severity of the testing
to which the material has been subjected in its
current form?

C1.19 Does the library provide the abil-
ity to export its classification scheme and
catalog into a documented external represen-
tation? And, conversely, does the library
provide the ability to import information from
this external representation into its classifica-
tion scheme and catalog?

A library that can import and export classifi-
cation and catalog information into a docu-
mented external representation can exchange
that information with other libraries.

C1.20 Does the library support tool
integration?

The tools in a project’s development envi-
ronment can more effectively support the
reuse process if they have access to the
information maintained by the reuse library.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
1999 13:22:13

July 15,

Information Handling Services, 1999

AIAA 6-010 93 B 0695534 000L56) T50 W

American Institute of Aeronautics and Astronautics

370 L'Enfant Promenade, SW
Washington, DC 20024-2518

ISBN 1-56347-049-7

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:22:13 Information Handling Services, 1999

